Seminar 4. How FCFS Works? Calculating Average Waiting Time

Task. Give an example to FCFS and SJN(or SJF) with explanation and calculation

Here is an example to FCFS of five processes arriving at different times. Each process has a different burst time.

Process	Burst time	Arrival time
P1	6	2
P2	3	5
Р3	8	1
P4	3	0
P5	4	4

Using the FCFS scheduling algorithm, these processes are handled as follows.

Step 0) The process begins with P4 which has arrival time 0

Step 1) At time=1, P3 arrives. P4 is still executing. Hence, P3 is kept in a queue.

Process	Burst time	Arrival time
P1	6	2
P2	3	5
Р3	8	1
P4	3	0

Step 2) At time= 2, P1 arrives which is kept in the queue.

Process	Burst time	Arrival time
P1	6	2
P2	3	5
P3	8	1
P4	3	0
P5	4	4

Step 3) At time=3, P4 process completes its execution.

Step 4) At time=4, P3, which is first in the queue, starts execution.

Process	Burst time	Arrival time
P1	6	2
P2	3	5
P3	8	1
P4	3	0
P5	4	4

Step 5) At time =5, P2 arrives, and it is kept in a queue.

Process	Burst time	Arrival time
P1	6	2
P2	3	5
P3	8	1
P4	3	0
P5	4	4

5 P1 P5 P2

P4	P3
'4	13

Step 6) At time 11, P3 completes its execution.

Step 7) At time=11, P1 starts execution. It has a burst time of 6. It completes execution at time interval 17

Step 8) At time=17, P5 starts execution. It has a burst time of 4. It completes execution at time=21

Step 9) At time=21, P2 starts execution. It has a burst time of 2. It completes execution at time interval 23

Step 10) Let's calculate the average waiting time for above example.

Waiting time = Start time - Arrival time

$$P4 = 0-0 = 0$$

$$P3 = 3-1 = 2$$

$$PI = 11-2 = 9$$

Average Waiting Time